CHEMISTRY QUESTION PAPER WITH SOLUTION (CODE - $2^{\text {ND }}$ SHIFT)

1. Cast iron is used for the manufacture of :
(1) Wrought iron and steel
(2) Wrought iron and pig iron
(3) Wrougth iron, pig iron and steel
(4) Pig iron, scrap iron and steel

Sol. 1

Refer topic metallurgy
2. The shape/structure of $\left[\mathrm{XeF}_{5}\right]^{-}$and $\mathrm{XeO}_{3} \mathrm{~F}_{2}$, respectively, are :
(1) Pentagonal planar and trigonal bipyramidal
(2) Trigonal bipyramidal and trigonal bipyramidal
(3) Octahedral and square pyramidal
(4) Trigonal bipyramidal and pentagonal planar

Sol. 1

$$
\begin{array}{ll}
{[\mathrm{XeF}]_{5}^{-}} & 5 \mathrm{BP}+2 \mathrm{LP}=7 \mathrm{VSEP} \mathrm{sp}^{3} \mathrm{~d}^{3} \text { hybridisation } \\
\mathrm{XeO} \underset{\mathrm{~F}_{2}}{ } & 5 \mathrm{BP}+0 \mathrm{OP}=5 \mathrm{VSEP} \\
\mathrm{sp} p^{3} \mathrm{~d} \text { hybridisation }
\end{array}
$$

3. Simplified absorption spectra of three complexes ((i), (ii) and (iii)) of $\mathrm{M}^{\mathrm{n+}}$ ion are provided below; their max values are marked as A, B and C respectively. The correct match between the complexes and their max values is:

Wave length (nm)
(i) $[M(N C S)]^{(-0+n)}$
(ii) $[\mathrm{MF}]^{(-6+n)^{6}}$
(iii) $[\mathrm{M}(\mathrm{NH})]_{6}^{\mathrm{n}+}$
(1) A-(i), B-(ii), C-(iii)
(2) A-(iii), B-(i), C-(ii)
(3) A-(ii), B-(iii), C-(i)
(4) A-(ii), B-(i), C-(iii)

Sol. 2

A $\mathrm{NH}_{3} \mathrm{comp}$ (iii)
B NCS comp (i)
C F^{-}comp (ii)
using spectrochemical series of ligand
$\mathrm{F}^{-}<\mathrm{NCS}^{-}<\mathrm{NH}_{3}$ order of +e
crystal field spliting energy
So. NH3 complex
F^{-}complex - C
NCS^{-}complex B
4. The correct observation in the following reactions is:

Sucrose | Gly cos idic bond |
| :---: |
| Cleavage |
| (Hydrolysis) |\quad A B \(\quad \underset{\substack{Seliwanoff 's

reagent}}{(1) Fin}\)

Sol. 1

(1) Formation of red colour
(2) Formation of blue colour
(3) Formation of violet colour
(4) Gives no colour

Sucrose Gly cosidic bond
Cleavage (Hydrolysis)

Glucos e Fructose

Seliwanoff 's
reagent

Re dColour
5. The results given in the below table were obtained during kinetic studies of the following reaction : $2 A+B C+D$

Experiment	$[\mathrm{A}] /$ molL^{-1}	$[\mathrm{B}] /$ molL^{-1}	Initial rate/ $\mathrm{molL}^{-1} \mathrm{~min}^{-1}$
I	0.1	0.1	6.00×10^{-3}
II	0.1	0.2	2.40×10^{-2}
III	0.2	0.1	1.20×10^{-2}
IV	X	0.2	7.20×10^{-2}
V	0.3	Y	2.88×10^{-1}

X and Y in the given table are respectively :
(1) $0.4,0.4$
(2) $0.3,0.4$
(3) $0.4,0.3$
(4) $0.3,0.3$

Sol. 2

$2 A+B$

$$
C+D
$$

Exp. (I) $\quad 6 \times 10^{-3}=K(0.1)^{p}(0.1)^{q}$
(II) $\quad 2.4 \times 10^{-2}=K(0.1)^{\mathrm{p}}(0.2)^{\mathrm{q}}$
(III) $1.2 \times 10^{-2}=K(0.2)^{\mathrm{p}}(0.1)^{\mathrm{q}}$
$\frac{\exp (\mathrm{I})}{\exp (\mathrm{II})} \quad \frac{1}{4}=1^{1^{q}}{ }^{-\mathrm{q}}=2$
$\frac{\operatorname{Exp} .(\mathrm{I})}{\operatorname{Exp} .(\mathrm{III})} \quad \frac{1}{2}=\frac{1}{2}^{\mathrm{p}} \mathrm{p}=1$
exp. (I) exp (IV)
$\begin{array}{ll}0.6 \quad 10^{-2} & 0.1^{1} \\ 0.1^{2}\end{array}$
$\begin{array}{llll}7.2 & 10 \quad 0.2\end{array}$
1 0.1-1-
12×4
$[x]=0.3$
$\exp (\mathrm{I}) \exp (\mathrm{V})$

0.610^{-2}	$0.1{ }^{1}$	0.1
2.8810^{-1}	0.3	y
110_{-2}		
	y^{2}	0.16
$48 \quad 3 \quad y^{2}$		
$y=0.4$		
Ans(2)		

6. Match the type of interaction in column A with the distance dependence of their interaction energy in column B :
A
$\begin{array}{cc} & \mathbf{B} \\ \text { (a) } \quad & \frac{1}{r}\end{array}$
(I) ion-ion
(II) dipole-dipole
(b) $\frac{1}{r^{2}}$
(III) London dispersion
(c) $\frac{1}{r^{3}}$
(d) $\frac{1}{r^{6}}$
(1) (I)-(a), (II)-(b), (III)-(d)
(2) (I)-(a), (II)-(b), (III)-(c)
(3) (I)-(b), (II)-(d), (III)-(c)
(4) (I)-(a), (II)-(c), (III)-(d)

Sol. 4
ion-ion $\frac{1}{r}$
dipole - dipole $\frac{1}{r^{3}}$
Londong dispersion $\frac{1}{r^{6}}$
7. The major product obtained from E2- elimination of 3-bromo-2-fluoropentane is :
(1)

(2)

(3)

(4)

Sol. 1

8. Consider the reaction sequence given below :

Which of the following statements is true :
(1) Changing the concentration of base will have no effect on reaction (1).
(2) Doubling the concentration of base will double the rate of both the reactions.
(3) Changing the base from OH to OR will have no effect on reaction (2).
(4) Changing the concentration of base will have no effect on reaction (2).

Sol. 1

9. The size of a raw mango shrinks to a much smaller size when kept in a concentrated salt solution.
(1) Diffusion
(2) Osmosis
(3) Reverse osmosis
(4) Dialysis

Sol. 2
Theoritical
Ans. Osmosis
Option (2)
10. If you spill a chemical toiled cleaning liquid on your hand, your first aid would be :
(1) Aqueous NH_{3}
(2) Aqueous NaHCO_{3}
(3) Aqueous NaOH
(4) Vinegar

Sol. 2

Fact
11. Arrange the followig labelled hydrogens in decreasing order of acidity :

(1) $b>a>c>d$
(2) $b>c>d>a$
(3) $c>b>d>a$
(4) $c>b>a>d$

Sol. 2
Order of acidic strength

12. An organic compound ' $\mathrm{A}^{\prime}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)$ when treated with conc. HI undergoes cleavage to yield compounds ' B^{\prime} and ' C^{\prime}. ' B^{\prime} gives yellow precipitate with AgNO_{3} where as ' C^{\prime} tautomerizes to ' D '. ' D ' gives positive iodoform test. ' A^{\prime} could be :
(1)

(2)

(4)

Sol. 1

13. Two elements A and B have similar chemical properties. They don't form solid hydrogencarbonates, but react with nitrogen to form nitrides. A and B, respectively, are :
(1) Na and Ca
(2) Cs and Ba
(3) Na and Rb
(4) Li and Mg

Sol. 4
$\mathrm{LiHCO}_{3} \& \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ does not exist in solid form but both forms nitrides with nitrogen gas
14. The number of subshells associated with $n=4$ and $m=-2$ quantum numbers is :
(1) 4
(2) 8
(3) 2
(4) 16

Sol. 3
$\mathrm{n}=4$

$$
\begin{array}{ll}
=0 & m=0 \\
=1 & m=-1,0,+1 \\
=2 & m=-2,+2,-1,+1,0 \\
=3 & m \quad 3,2,1,0
\end{array}
$$

Ans. ' 2 ' Subshells
Option (3)
15. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Sol. 3

Address - Near Himfed Building, BCS Chowk, New Shimla (HP) - 171009
16. Two compounds A and B with same molecular formula $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ undergo Grignard's reaction with methylmagnesium bromide to give products C and D. Products C and D show following chemical tests.

Test	C	D
Ceric ammonium nitrate Test	Positive	Positive
Lucas Test	Turbidity obtained after five minutes	Turbidity obtained immediately
Iodoform Test	Positive	Negative

C and D respectively are :
(1) $\mathrm{C}=\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$;

(2)

(3) $\mathrm{C}=\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$;

(4)

CH_{3}

Sol. 2

17. Three elements X, Y and Z are in the $3^{\text {rd }}$ peroid of the periodic table. The oxides of X, Y and Z, respectively, are basic, amphoteric and acidic, The correct order of the atomic numbers of X, Y and Z is :
(1) $X<Y<Z$
(2) $Y<X<Z$
(3) $Z<Y<X$
(4) $X<Z<Y$

Sol. 1

x	$<\mathrm{y}$	$<$
Mg	Zl	
Basic	amphoteric	Si
acidic		
oxide		oxide

18. The one that is not expected to show isomerism is :
(1) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2+}$
(2) $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]_{2+}$
(3) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(4) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Sol. 4
[$\left.\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Ni}_{2+}$ is sp_{3} hybridised \& such tetrahedral complex does not show either of geometrical or optical isomerism
$\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ shows only optical isomers while other three shows geometrical isomerism
19. Amongst the following statements regarding adsorption, those that are valid are :
(a) H becomes less negative as adsorption proceeds.
(b) On a given adsorbent, ammonia is adsorbed more than nitrogen gas.
(c) On adsorption, the residual force acting along the surface of the adsorbent increases.
(d) With increase in temperature, the equilibrium concentration of adsorbate increases.
(1) (b) and (c)
(2) (c) and (d)
(3) (a) and (b)
(4) (d) and (a)

Sol. Statement 'a' \& 'b'
20. The molecular geometry of SF6 is octahdral. What is the geometry of SF4 (including lone pair(s) of electrons, if any) ?
(1) Pyramidal
(2) Trigonal bipyramidal
(3) Tetrahedral
(4) Square planar

Sol. 2

SF4 is $\mathrm{Sp}^{3} \mathrm{~d}$ hybridised in which hybrid orbitals have TBP arrangement but its shape is sea-saw
21. The ratio of the mass percentages of ' $\mathrm{C} \& \mathrm{H}^{\prime}$ and ' $\mathrm{C} \& \mathrm{O}^{\prime}$ of a saturated acyclic organic compound ' X ' are 4:1 and 3:4 respectively. Then, the moles of oxygen gas required for complete combustion of two moles of organic compound ' X ' is \qquad _.
Sol. Mass ratio of $\mathrm{C}: \mathrm{H}$ is $4: 1 \quad 12: 3$
\& $\mathrm{C}: \mathrm{O}$ is $3: 412: 16$
So,
mass mole mole ratio
$\begin{array}{llll}C & 12 & 1 & 1\end{array}$
$\begin{array}{llll}\mathrm{H} & 3 & 3 & 3\end{array}$
$\begin{array}{llll}O & 16 & 1 & 1\end{array}$
Empirical formula $\mathrm{CH}_{3} \mathrm{O}$
as compound is satured a cyclic so,molecular formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$.

$$
\underset{2 \text { mole }}{\mathrm{CHO}_{2}}+\underset{\substack{2 \text { mole }}}{\frac{5}{2} \mathrm{O}_{2(9)}} \quad 2 \mathrm{CO} \quad{ }_{2(9)}+3 \mathrm{H}_{2(9)}^{\mathrm{O}_{(9)}}
$$

So, required moles of O_{2} is 5
22. For the disproportionation reaction $2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightharpoonup \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$ at K , In K (where K is the equilibrium constant) is \qquad $\times 10^{-1}$.
Given :
$\left(\mathrm{ECu}^{0}{ }_{2} / \mathrm{Cu}{ }^{0} .{ }^{16} \mathrm{~V}\right.$
$\mathrm{ECu}^{0} / \mathrm{Cu} 0.52 \mathrm{~V}$
RT 0.025)

F
Sol. 144

$$
0.36
$$

$$
\begin{aligned}
& 2 \mathrm{Cu}^{+} \mathrm{Cu}(\mathrm{~s})+\mathrm{Cu}^{+2} \\
& \mathrm{E}^{\mathrm{O}}= 0.52-0.16 \\
&= 0.36 \\
&= \frac{\mathrm{RT}}{\mathrm{nF}} \ln (\mathrm{k}) \\
& \mathrm{E}_{\mathrm{eq}}^{0} \\
& \overline{0.025} \quad- \\
& \text { eq } \\
&=\overline{360} \\
&= \overline{25}=14.4 \\
&= 144 \times 10^{-1}
\end{aligned}
$$

Ans. 144
23. The work function of sodium metal is $4.41 \times 10^{-19} \mathrm{~J}$. If photons of wavelength 300 nm are incident on the metal, the kinetic energy of the ejected electrons will be ($\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$; c $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) \qquad $\times 10^{-21} \mathrm{~J}$.

Sol. 222

$=4.41 \times 10^{-19} \mathrm{~J}$
$=300 \mathrm{~nm}$
$K E_{\max }=-$
$=\frac{6.6310^{-34} 310^{8}}{30010^{-9}}-4.41 \times 10^{-19}$
$=6.63 \times 10^{-19}-4.41 \times 10^{-19}$
$=222 \times 10^{-21}$
Ans. 222
24. The oxidation states of transition metal atoms in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KMnO}_{4}$ and $\mathrm{K}_{2} \mathrm{FeO}_{4}$, respectively, are x, y and z. The sum of x, y and z is \qquad .

Sol. 19

$$
\stackrel{6}{\mathrm{~K}_{2}{\stackrel{6}{\mathrm{C}} \mathrm{r}_{2} \mathrm{O}_{7}}^{\mathrm{K} \mathrm{Mn} \mathrm{O}_{4}}} \stackrel{7}{\mathrm{~K}_{2}} \stackrel{6}{\left[\mathrm{Fe} \mathrm{O}_{4}\right]}
$$

25. The heat of combustion of ethanol into carbon dioxide and water is -327 kcal at constant pressure. The heat evolved (in cal) at constant volume and $27^{\circ} \mathrm{C}$ (if all gases behave ideally) is ($\mathrm{R}=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) \qquad -.
Sol. $\quad \mathrm{H}^{0}{ }_{c}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=-327 \mathrm{kcal}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{CO}_{2}(\mathrm{~g})+3\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{I})$

$$
\begin{aligned}
\mathrm{E}^{0}{ }_{\mathrm{c}} & =\mathrm{H}^{0}-\mathrm{ngRT} \\
& =-327 \times 1000-(-1) \times 2 \times 300 \\
& =-327000+600 \\
& =-326400
\end{aligned}
$$

